中華民國國家標準 CNS

真空技術-詞彙-第1部:一般 用語

Vacuum technology – Vocabulary – Part 1: General terms

> CNS 草制 1130382:2024

中華民國 年 月 日制定公布 Date of Promulgation: - -

中華民國 年 月 日修訂公布 Date of Amendment: - -

本標準非經經濟部標準檢驗局同意不得翻印

目錄

	頁次
前言	2
1. 適用範圍	
2. 引用標準	3
3. 用語及定義	3
4. 符號及縮寫用語	11
名詞對照	
F = 4 € 4 (1)	

前言

本標準係依據 2019 年發行之第二版 ISO 3529-1,不變更技術內容,制定成為中華民國國家標準。

本標準係依照標準法之規定,經國家標準審查委員會審定,由主管機關公布之中華民 國國家標準。

依標準法第四條之規定,國家標準採自願性方式實施,但經各該目的事業主管機關引 用全部或部分內容為法規者,從其規定。

本標準並未建議所有安全事項,使用本標準前應適當建立相關維護安全與健康作業, 並且遵守相關法規之規定。

本標準之部分內容,可能涉及專利權、商標權與著作權,主管機關及標準專責機關不 負責任何或所有此類專利權、商標權與著作權之鑑別。

1. 適用範圍

本標準定義真空技術中使用之一般用語,其盡可能提供精確的理論定義,同時謹記 在實務中使用該概念之需求。

備考: 若在使用某些與量測相關量之定義時出現困難,為得此等用語的實務解釋,建議參考有關量測此等量之相關標準。

2. 引用標準

本標準未引用其他標準。

3. 用語及定義

下列之用語及定義適用於本標準。

3.1 一般用語

3.1.1 真空(vacuum)

通常用以描述稀薄氣體狀態或與此狀態相對應之環境的用語,該狀態之壓力或分子密度低於現行的大氣壓力位準。

3.1.2 真空範圍(ranges of vacuum)

依一定之壓力區間而有不同的真空範圍。

- 備考 1. 雖然在選擇此等區間之限界有所不同,但下列清單提供典型範圍。其限 界可視為近似值。
- 備考 2. 地面上之現行大氣壓力取決於天氣條件及海拔,其範圍從 31 kPa(聖母峰之海拔,天氣條件 "低氣壓")直至 110 kPa (死海之海拔,天氣條件 "高氣壓")。

	定義	範圍定義之理由如下
壓力範圍		(典型情況):
現行大氣壓力 (31 kPa 至 110 kPa)至 100 Pa	低(粗)真空	壓力可藉由簡單材料(如普通鋼) 及正排量真空泵來達成。氣體屬 黏性流態。
<100 Pa 至 0.1 Pa	中(細)真空	壓力可藉由精製材料(如不銹鋼) 及正排量真空泵來達成。氣體屬 過渡流態。
<0.1 Pa 至 1×10 ⁻⁶ Pa	高真空(HV)	壓力可藉由精製材料(如不銹鋼)、彈性體密封件及高真空泵 來達成。氣體屬分子流態。
<1×10 ⁻⁶ Pa 至 1×10 ⁻⁹ Pa	超高真空(UHV)	壓力可藉由精製材料(如低碳不 銹鋼)、金屬密封件、特殊表面 處理及清潔、烘烤及高真空泵來 達成。氣體屬分子流態。
< 1×10 ⁻⁹ Pa	極高真空(XHV)	壓力可藉由高精密材料(例:真空 燒製低碳不銹鋼、鋁、鈹銅及 鈦)、金屬密封件、特殊表面處 理及清潔、烘烤及額外吸氣泵來 達成。氣體屬分子流態。

3.1.3 超潔淨真空(ultra clean vacuum)

需特殊條件之中真空或高真空,對某些氣體類型,其等同於 U H V 條件。

備考 1. 對特定氣體種類(雜質)的要求取決於應用。

備考 2. 碳氫化合物、CO、CO₂ 及 H₂O 為典型之雜質氣體。

備考 3. 特殊要求亦可能包括對低顆粒密度之規範。

3.1.4.1 真空壓力(pressure of a vacuum)

p

< 指在邊界表面上之真空壓力 > 氣體施加在真實表面上之力的法線分量,除以該表面之面積。

備考:若存在氣體之淨質量流,則指定相對於質量流向量的表面之方位。

3.1.4.2 真空壓力(pressure of a vacuum)

p

< 指在氣體容積內的指定點之真空壓力 > 依理想氣體定律之氣體狀態,若有必要,對真實氣體進行修正。

備考 1.當應用理想氣體定律時,在無限小體積中之壓力 p 為此體積中氣體分子數密度 n、波茲曼常數 k 及溫度 T 之乘積。

備考 2.對在真空中之大多數實務應用,理想氣體定律即足夠,無需對真實氣體(氣體分子之體積及相互作用)進行修正。

3.1.5 分壓(partial pressure)

由氣體混合物中之一指定成分而產生的壓力。

3.1.6 全壓(total pressure)

在較短的用語 "壓力"可能無法清楚區分個別分壓及其總和時,"全壓"用於在文中表示氣體混合物所有成分的分壓之和的用語。

3.2 定義氣體、蒸氣及其參數之用語

3.2.1 氣體(gas)

物質處於其分子實際上不受分子間力之限制,因此該物質可自由佔據任何可用空間的一種狀態。

備考:在真空技術中,"氣體"一詞已廣泛地應用於不凝結氣體及蒸氣。

3.2.2 不凝結氣體(non-condensable gas)

所考慮物質之溫度高於其臨界溫度的氣體,即僅藉由增加壓力無法轉變為凝結相 之氣體。

3.2.3 蒸氣(vapour)

所考慮物質之溫度低於其臨界溫度的氣體,即僅藉由增加壓力即可轉變為凝結相 之氣體。

3.2.4 飽和蒸氣壓(saturation vapour pressure)

 $p_{\rm L}$

在現行溫度下與其一凝結相處於熱力學平衡的蒸氣所施加之壓力。

3.2.5 飽和度(degree of saturation)

蒸氣所施加的壓力對其飽和蒸氣壓之比。

3.2.6 飽和蒸氣(saturated vapour)

在給定溫度下,施加之壓力等於其飽和蒸氣壓的蒸氣。

備考:當所考慮物質的蒸氣與其一凝結相處於熱力學平衡時,該蒸氣即為飽和 蒸氣。

3.2.7 不飽和蒸氣(unsaturated vapour)

在給定溫度下,施加之壓力低於其飽和蒸氣壓之蒸氣。

3.2.8 分子數密度(number density of molecules)

n

< 指在氣體中的指定點並在某一瞬間之分子數密度>在一包圍該點且經適當選擇的體積中,在時間 t 所含之分子數除以該體積。

備考: 為簡潔,使用 "時間 "一詞。更準確地說,在以該時間為中心之一段短時間內取平均,該段時間需足夠長,以便獲得適當的統計平均值。

3.2.9 么壓質量密度(unitary mass density)

 ρ_u

氣體之質量密度除以其壓力。

3.2.10 整體速度(bulk velocity)

v

在一包圍該點且經適當選擇的體積中,在時間 t 其所含的分子平均速度。

備考: 必須選擇足夠大之體積以包含足夠數目的分子,以便獲得穩健的統計結果,同時又足夠小,使得獲得的值在此體積內不會顯著改變。

3.2.11 温度(temperature)

T

與同一體積內,與整體速度相關的參考框架中,時間 t 時包含的分子之平均動能成正比的量。

在時間 t 且在一小體積內,與其所含分子之平均動能成正比的量,以相對於同一體積的整體速度為參考框架計算之。

備考:參照 3.2.10 備考。

3.2.12 壓力-體積單位中的氣體量(quantity of gas in pressure-volume units)

pV

統計上處於靜止狀態的完美氣體,其所佔體積與其壓力的乘積。

備考 1. 應指定氣體之溫度。

備考 2. 以此定義之量等於氣體質量除以其么壓質量密度之商。

備考 3. 在氣體所佔體積中, pV 佔該氣體之本質(或潛在)能量的三分之二。

3.3 表徵氣體分子移動及氣體流動特性所需之用語

3.3.1 分子平均自由徑(mean free path of molecules)

1, λ

氣體分子與其他分子2次接續碰撞間行進的平均距離。

- 備考 1. 宜在足夠多的分子及跨一段足夠長之時間上取平均,以提供具統計顯著 性的值。
- 備考 2.在此平均自由徑概念中,假設分子間的相互作用在一定距離外被截斷(硬球模型或截斷勢能)。平均自由徑亦可定義於其他類型的相互作用(如雷納-鍾斯(Lennard-Jones)勢能)。在此情況下,該量等於以硬球建模的氣體之平均自由徑,該模型與所觀察的氣體具相同之黏度、溫度及密度。

3.3.2 克努森數(Knudsen number)

K.Kn

克努森數為平均自由徑對管道或容器的一特徵尺度之比值。

備考: 對圓管,管道之特徵尺度為直徑。對矩形橫截面之管道,特徵尺度為矩 形的較小邊長。

3.3.3 稀薄參數(rarefaction parameter)

δ

管道或容器的特徵尺度對平均自由徑之比值。

備考 1. 對圓管,管道之特徵尺度為直徑。對矩形橫截面之管道,特徵尺度為矩形的較小邊長。

備考 2. 稀薄參數與克努森數成反比。

3.3.4 碰撞率(collision rate)

ν

在給定之一段時間內,氣體分子(或其他指定粒子)相對於其他分子(或粒子之指 定群集)移動時所遭受的平均碰撞次數,除以該段時間。

備考: 宜在足夠多的分子及跨一段足夠長之時間上取平均,以提供具統計顯著 性的值。

3.3.5 氣體擴散(diffusion of gas)

氣體在另一種介質中由於濃度梯度所引起之移動。

備考: 該介質可為另一氣體(在此情況下,擴散被稱為"互相")或為一凝結介質。

3.3.6 擴散係數(diffusion coefficient)

擴散率(diffusivity)

D

單位面積之質量流率絕對值除以密度梯度,其中該面積垂直於梯度。

3.3.7 黏性流(viscous flow)

在平均自由徑遠小於管道橫截面最小內部尺度的條件下,氣體經過管道之流動, 因此該流動隨氣體的黏度而定。

備考:該流動可能為層流或紊流。

3.3.8 帕穗流(Poiseuille flow)

因跨長管之壓力差所引起流過該管的特殊流動情況。

備考:當流動為層流且管橫截面為圓形時,此流動特別被稱為哈根-帕穗流 (Hagen-Poiseuille flow)。

3.3.9 分子流(molecular flow)

在平均自由徑遠大於管道橫截面之最大內部尺度的條件下,氣體經過此管道之流動。

3.3.10 中間流(intermediate flow)

過渡流(transitional flow)

在黏性流與分子流間之情況下,氣體經過管道之流動。

3.3.11 滑移流(slip flow)

在平均自由徑較管道的特徵尺度小,但差距並不大之條件下,氣體經過此管道 之流動,因此該流動受管道壁上速度滑移條件的影響。

備考 1. 對管道之特徵尺度,參照 3.3.2 備考。

備考 2. 對滑移流之條件,如黏性流之假設,管道壁處的整體速度不假設為零。 備考 3. 滑移流之條件介於過渡流與黏性流之間。

3.3.12 分子洩流(molecular effusion)

洩流(effusive flow)

在開口的最大尺度小於平均自由徑的條件下,氣體經過開口之流動。

3.3.13 蒸散作用(transpiration)

由於壓力差造成氣體通過多孔固體之流動。

3.3.14 熱蒸散(thermal transpiration)

因 2 容器溫度差,造成連接體積間之氣體流動。其在氣體轉移達到平衡時,會 導致壓力梯度。

3.3.15 分子流率(molecule flow rate)

分子通量(molecular flux)

 q_{N}

在給定的一段時間內,分子沿給定方向穿越一面積S的數目,與分子沿相反方向穿越S的數目間之差,除以該段時間。

3.3.16 分子流率密度(molecule flow rate density)

分子通量密度(density of molecular flux)

分子流率除以橫截面積。

3.3.17 流通量(throughput)

 q_{pV}

在給定之一段時間內,通過橫截面之氣體量(以壓力-體積為單位),除以該段時間。 備考:此亦為質量流率除以么壓質量密度。

3.3.18 質量流率(mass flow rate)

 q_m

在給定之一段時間內,穿越面積S之氣體質量除以該段時間。

3.3.19 體積流率(volume flow rate)

 $q_{\rm V}$

在給定之一段時間內,在指定溫度及壓力下,穿越面積S之氣體體積除以該段時間。

3.3.20 莫耳流率(molar flow rate)

 q_{ν}

在給定之一段時間內,給定氣體穿越面積 S 之莫耳數除以該段時間。

3.3.21 馬克士威速度分布(maxwellian velocity distribution)

符合馬克士威-波茲曼(Maxwell-Boltzmann)速度分布函數之速度分布。

備考:此為在給定溫度下,處於平衡狀態之氣體分子的速度分布。

3.3.22 傳輸機率(transmission probability)

 $P_{\rm C}$

一分子隨機進入管道之入口,然後通過管道的出口,而不沿相反方向通過入口 之機率。

3.3.23 分子流導(molecule conductance)

 $C_{\rm N}, U_{\rm N}$

< 孔口或管道的 2 指定橫截面間之分子流導>分子流率除以孔口 2 側或管道 2 橫截面處之平均分子數密度的差。

3.3.24 流導(conductance)

C, U

<管道、部分管道或孔口之流導>假設在等溫條件下,流通量除以在2指定橫截 面處,或在孔口2側處現行的平均壓力之差。

3.3.25 本質流導(intrinsic conductance)

 $C_{\rm i}, U_{\rm i}$

在容器內具現行之馬克士威速度分布條件之特殊情況下,2容器間之管道(或孔口)的流導。

備考:在分子流狀況下,其等於入口之流導與傳輸機率之乘積。

3.3.26 流阻(resistance)

w

流導之倒數。

3.4 真空技術中定義表面及容積效應之用語

3.4.1 吸取(sorption)

藉由固體或液體(吸取劑)吸取氣體或蒸氣(吸取物)。

3.4.2 吸附(adsorption)

氣體或蒸氣(吸附物)被保留在固體或液體(吸附劑)表面的吸取。

3.4.3 物理吸取(physisorption)

由物理力產生之吸取,其中未發生明確的化學鍵結。

3.4.4 化學吸取(chemisorption)

發生化學鍵結之吸取。

3.4.5 吸收(absorption)

氣體(吸收物)擴散入固體或液體(吸收劑)體積內的吸取。

3.4.6 能量(熱)適應係數(energy (thermal) accommodation coefficient)

 α

撞擊粒子與表面間實際轉移的平均能量,對已與表面達到完全熱平衡的撞擊粒子,由表面返回所轉移的平均能量之比。

3.4.7 動量適應係數(momentum accommodation coefficient)

σ

撞擊粒子與表面間實際轉移的平均動量,對已與表面達到完全熱平衡的撞擊粒子,由表面返回所轉移的平均動量之比。

3.4.8 撞擊率(impingement rate)

0

在給定之一段時間內,撞擊在一表面上的分子數目,除以該段時間及該表面積。

3.4.9 凝結速率(condensation rate)

在給定之一段時間內,凝結在一表面上之分子數目(或物質的數量或質量),除以 該段時間及該表面積。

3.4.10 黏著率(sticking rate)

在給定之一段時間內,吸取在一表面上之分子數目,除以該段時間及該表面積。

3.4.11 黏著機率(sticking probability)

 P_{S}

黏著率對撞擊率之比。

3.4.12 滯留時間(residence time)

τ

分子在吸取狀態下保持與表面結合之平均時間。

3.4.13 遷移(migration)

在一表面上所吸附分子之運動。

3.4.14 解吸取(desorption)

被材料吸取之氣體或蒸氣的解放。

備考:解放可為自發性,並可藉由物理過程加速。

3.4.15 脫氣(degassing)

從材料中蓄意解吸取氣體。

3.4.16 釋氣(outgassing)

氣體從材料中自發性解吸取。

3.4.17 比蒸發率(specific evaporation rate)

在給定之一段時間內,從一表面蒸發之分子數目(或物質的數量或質量),除以 該段時間及該表面積。

3.4.18 比解吸取率(specific desorption rate)

釋氣率(outgassing rate)

脫氣率(degassing rate)

在給定之一段時間內,從凝結材料解吸取(釋氣或脫氣)的流通量(或分子流率), 除以該材料之表面積。

3.4.19 渗透(permeation)

氣體穿過固體屏障的流動。

備考:該過程涉及氣體穿過固體的擴散,並可能涉及各種表面現象。

3.4.20 滲透率(permeability)

P

<固體屏障之滲透率>氣體穿過屏障之流通量(在穩態流動條件下),除以存在壁 2側上壓力的函數之量。

備考:此函數之形式取決於實際渗透中涉及的物理過程。

3.4.21 滲透係數(permeability coefficient)

渗透率與等於屏障厚度除以其面積的項之乘積。

4. 符號及縮寫用語

符號	稱呼	單位
α	能量適應係數	1
C, U	流導	$m^3/s (= 10^3 1/s)$
$C_{\rm i}, U_{\rm i}$	本質流導	$m^3/s (= 10^3 1/s)$
$C_{ m N}, U_{ m N}$	分子流導	$m^3/s (= 10^3 1/s)$
D	擴散係數	m^2s^{-1}
q_{pV}	氣體量	$Pa \cdot m^3$
K 或 Kn	克努森數	1
Ι, λ	平均自由徑	m
n	分子數密度	m ⁻³
p	壓力	Pa
P	渗透係數	1
P	渗透率	$mol \cdot m/(m^2 \cdot s \cdot Pa)$
P _C	傳輸機率	1
p_{L}	飽和蒸氣壓	Pa
P_S	黏著機率	1
q_{pV}	流通量	$Pa \cdot m^3 s^{-1}$ 或 $Pa \cdot 1 \cdot s^{-1}$
$q_{ m out}$	解吸取(釋氣率)	$Pa \cdot m^3 s^{-1}$ 或 $Pa \cdot 1 \cdot s^{-1}$
q_{m}	質量流率	kg·s ⁻¹
$q_{ m N}$	分子流率	s ⁻¹
q_V	體積流率	m^3s^{-1}
q_{v}	莫耳流率	mol⋅s ⁻¹
ν	整體速度	m⋅s ⁻¹
w	流阻	m ⁻³ s
δ	稀薄參數	1
T	溫度	К
φ	撞擊率	m-2s-1
v	碰撞率	s ⁻¹
$ ho_{ m u}$	么壓質量密度	kg⋅m ⁻³ Pa ⁻¹
σ	動量適應係數	1
τ	滯留時間	S

名詞對照

Lennard-Jones potential 雷納-鍾斯勢能

Maxwell-Boltzmann 馬克士威-波茲曼

Hagen-Poiseuille flow 哈根-帕穗流

相對應國際標準

ISO 3529-1:2019 Vacuum technology - Vocabulary - Part 1: General terms