
三. 液静壓主軸組裝

各工件加工完成後回廠確認零件尺寸(以其中一件為例)。

- (1). 準備用具(油標卡尺、工程圖面)。
- (2). 工程圖對照零件以游標卡尺做大略測量

1. 確認回廠 零件尺寸

確認工件尺寸

確認工件尺寸

各零件尺寸確認後進行零件清洗(以去漬油去漬)。

- (1). 準備清潔用具(去漬油、擦拭紙、手套(可有可無))。
- (2). 以擦拭紙沾取去漬油。
- (3). 完整擦拭各零件。

2. 零件清洗

完整擦拭工件各部分

各零件毛邊修整(此步驟特別重要)!

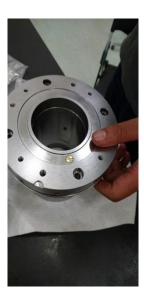
- (1). 準備各毛邊修整器具(油石、小銼刀、潤滑油、手套(可有可無))。
- (2). 以油石沾取潤滑油(細修),毛邊較大以小銼刀小心修整。
- (3). 完整將零件各部位(包括孔、切槽邊、0-ring裝配會接觸的部位)毛邊修整乾淨。

3. 零件毛邊 修整(非常重 要)


銼刀修整毛邊

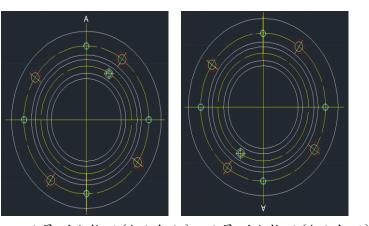
節流器裝配至需裝配之配合孔

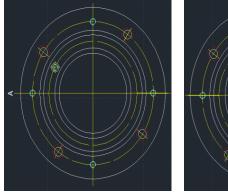
- (1). 準備裝置器具(節流器、一字起子、0-ring)。
- (2). 先將小孔節流器裝上0-ring,將預裝配之配合孔清潔乾淨。
- (3). 裝配節流器至配合孔內,檢查節流器有無凸出油室,檢查完畢後取出 節流器檢查 0-ring有無受損、斷裂。

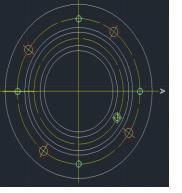

4. 節流器裝 配檢測

節流器裝置0-ring 一字起子裝置配合孔 鎖固後之俯視圖 檢查內側油室有無凸出止推油室裝配

- (1). 以線性高度歸進行尺寸量測。
- (2). 先歸零。
- (3). 四方向量測徑向止推面高度(內側)。
- (4). 四方向量測徑向止推面高度(外側)。
- (5). 四方向量測間隔環段差。
- (6). 四方向量測間隔環高度差。(取間隔環其中一面為基準,量測其三方向三點高度差。
- (7). 四方向量測心軸(段差)。


5. 進行關鍵 尺寸量測


高精密線性高度歸(解析度0.001mm)


- (3). 四方向量測徑向止推面高度(內側)。
- (4). 四方向量測徑向止推面高度(外側)。

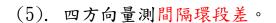
5. 進行關鍵 尺寸量測



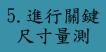
四點量測止推面(A點在上)四點量測止推面(A點在下)

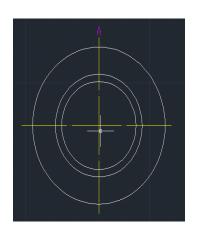
四點量測止推面(A點在左四點量測止推面(A點在右)

外側量測四點

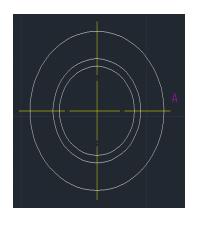

內側量測四點

徑向軸承止推面(外側) 實際量測數據

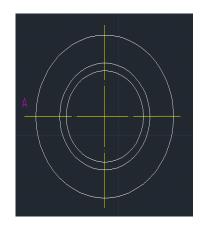

1.	106.013	A點在上
2.	106.009	A點在左
3.	106.008	A點在下
4.	106.011	A點在右

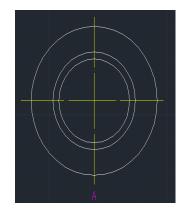

徑向軸承止推面(內側) 實際量測數據

1.	106.013	A點在上
2.	106.011	A點在左
3.	106.009	A點在下
4.	106.012	A點在右



(6). 四方向量測間隔環高度差。

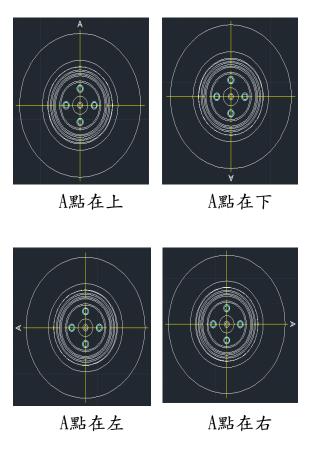


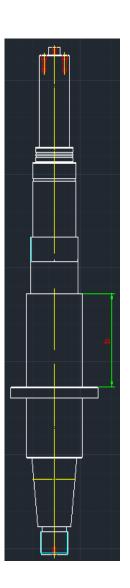

A點在上

A點在右

A點在左

A點在下




量測止推間隙環環段差

間隔環段差量測			
1.	6.451	A點在上	
2.	6.452	A點在左	
3.	6.451	A點在下	
4.	6.452	A點在右	

(7). 四方向量測心軸(段差)。

5. 進行關鍵尺寸量測

以耳部為基準量測b點段差

心軸段差量測			
1.	99.638	A點在上	
2.	99.636	A點在左	
3.	99.633	A點在下	
4.	99.636	A點在右	

6. 計算止推 間隙量

將止推間隔環先送到量測室,用線性高度規量測尺寸,前徑向軸承高度(零件量測值)加(上、下)止推 軸承油膜厚度設定為目標值,在要與心軸段差(零件量測值)加間隔環高度(零件量測值)相等,算出來的結果止推需要再研磨43um。

原止推間隔環段差高度6.451mm,心軸段差取最低點99.633,前徑向軸承取內側最低點106.006mm,油膜厚度設定為34um。

心軸段差99.633+間隔環段差6.451=106.084mm

前軸承內側106.006+油膜設定0.034=106.04mm

(心軸段差+隔環段差)106.084-(前軸承段差+油膜段差)106.04=0.043mm

所以間隔環的斷差需要磨約44um

計算出止推間隔環需要研磨量,並用磨床研磨約40um,研磨完成後再次進行量測

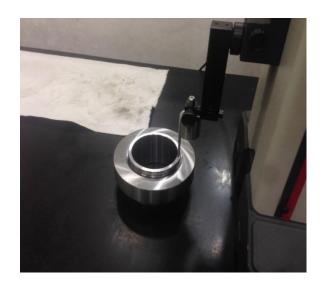
6. 計算止推 間隙量

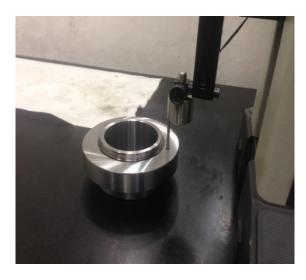
確認螺帽與止推間隙環 是否能接觸鎖緊

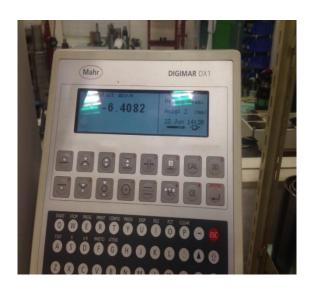
將止推間隙環放上磨床

刀面觸碰到表面

刀面觸碰到表面


研磨量40um


6. 計算止推 間隙量


以線性高度歸量測尺寸

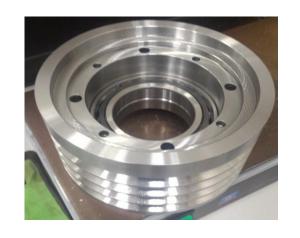
量測止推間隙環環段差

此面當作基準(歸零)

量測出的數值為 6.4082mm

間隔環4個方向段差量測 值				
1.	6.408	A點在上		
2.	6.409	A點在左		
3.	6.408	A點在下		
4.	6.409	A點在右		

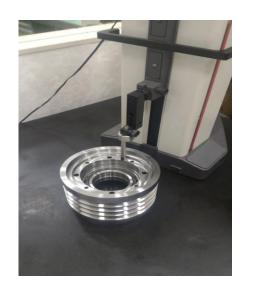
7. 皮帶輪組 裝過程


軸承內滾珠利用針筒注入潤滑油脂

後法蘭與精密螺帽裝配測試

後法蘭與軸承內環壓蓋裝配測試

皮帶輪放在烤盤上加熱100度放入軸承


皮帶輪與軸承外環裝配測試



後法蘭與皮帶輪裝配測試

7. 皮帶輪組裝過程

高度規量測 圖上之檢測點到軸承外環之高度

量測格環高度差

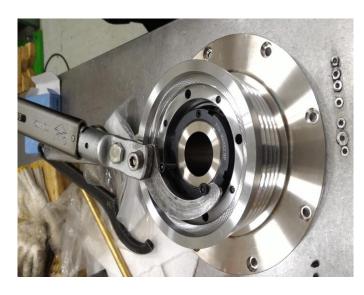
軸承外環高度27.096,隔環高度是27.230,隔環磨掉 $0.1 \, \text{mm}$,所以27.230 - 0.1 = 27.130 在減掉軸承高度27.096算出是 $0.034 \, \text{mm}$,但NSK建議隻預壓量為 $0.03 \, \text{到} 0.01 \, \text{mm}$,PMC的周先生說由於是用在卸荷機構所以還可以。

7. 皮帶輪組裝過程

(Mahr) DIGIMAR Contact above Height meas 27.230 Axis: Z (n 18 Jun 14: B N M (SP C

軸承外環格環高度

先把精密螺帽的無頭螺絲拆卸2隻,再裝上2隻較長的內六角螺絲,當作支點用來鎖緊螺帽, 將軸承內環座放入法蘭座,再將皮帶輪套上法蘭座 並試鎖螺帽。

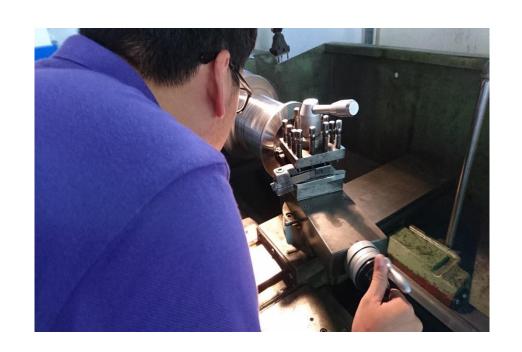


7. 皮帶輪組裝過程

扭力板手上400kg-cm之鎖緊力

换回原來的無頭螺絲

止付螺栓塗螺絲膠,鎖上30kg-cm扭力


套上間隔環、彈簧鋼片、上蓋板、鎖上等高螺栓

(1)將殼體內徑倒角約15度,方便前後徑向軸承可以順利放進去。

(2)孔位會因研磨過後會有毛邊,需用到油石將毛邊推掉。

8. 殼體內徑 倒角約15度

(1)前、後徑向軸承上的0型環上油,殼體內徑也上油後,將前、後徑向軸承放進殼體裝配。

前軸承0型環上油

殼體內徑上油

將螺絲當引導

前軸承放進殼體

(1)將心軸放進組合件裡(殼體、前後徑向軸承),測試轉動心軸的過程中並沒有轉動不順或卡住的情況。

10. 將心軸套 入前後軸承、 殼體組合

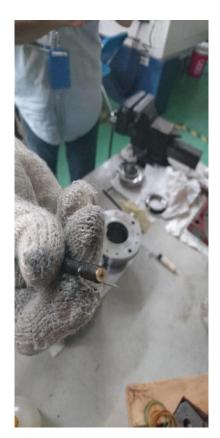
後軸承0型環上油

後軸承放進殼體

將心軸放入組合件

轉動心軸

(1)裝配沒有問題後,將前、後徑向軸承退出,檢查軸承上的0型環是否有受損情況。


11.前、後徑 向退出看0型 環是否有損 壞

前軸承推出殼體

使用止付螺絲頂出

頂出的止付螺絲

後軸承推出殼體

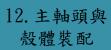
(2)當前、後徑向軸承退出後有發現到0型環有被剪切過的痕跡,發現是殼體內部的孔徑毛邊未修乾淨。(當天向廠商訂購0型環以及油管)

11.前、後徑 向退出看0型 環是否有損 壞

後軸承推出殼體

0型環因殼體孔位毛邊未修乾淨形成的破損

(3)油石在修毛邊效果不佳,所以改用倒角刀在殼體各個孔位稍微倒一下角。


11.前、後徑 向退出看0型 環是否有損 壞

倒角刀

倒角修毛邊

前軸承0型環上油

殼體內徑擦 油

殼體與軸承合上

後軸承0型環上油

退出後軸承

轉動心軸是否會 接觸卡點

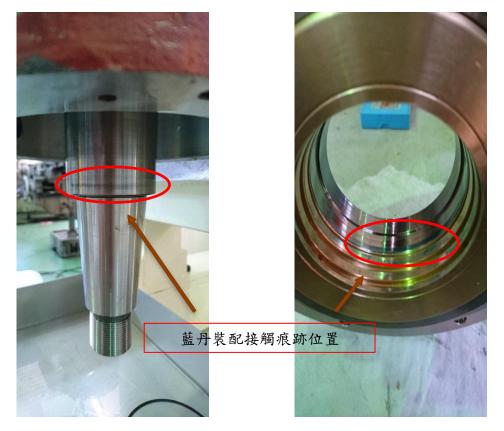
將心軸套進組合件

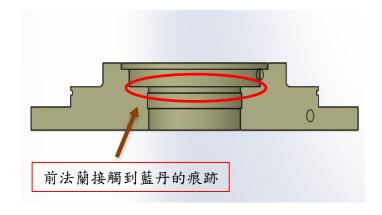
前軸承、殼體與 後軸承組合件

12. 主軸頭與 殼體裝配

主軸頭放上測試架

心軸、殼體套進主軸頭

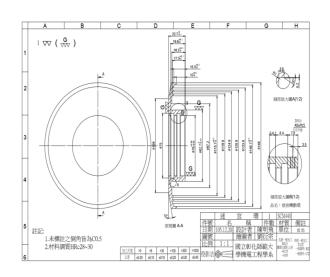

鎖上前法蘭



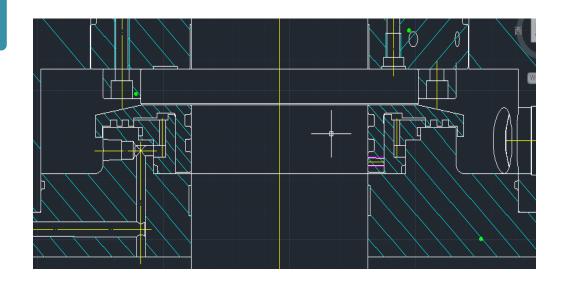
接上管線

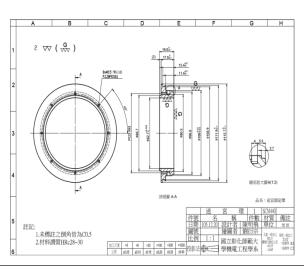
裝配得過程中沒有注意到前法蘭公件的尺寸並未做量測的動作,導致上述宮環、前法蘭與主軸的裝配上出問題,花了很多時間找出問題點,最後是決定在重新做一件前法蘭與迷宮環。問題點1:裝配過程中,發現到可能不是迷宮環的問題,後來塗上藍丹與法蘭配合,發現是法蘭有一個小端面有藍丹的痕跡,在裝上反裝上去配合,是前法蘭小端面有問題需要再研磨。

13. 迷宮環與 前法蘭的安 裝過程



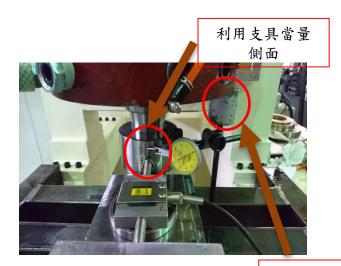
前法蘭3D圖

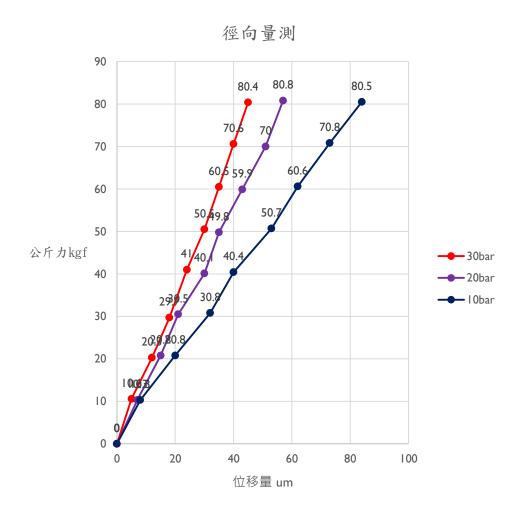

心軸 前法蘭


前法蘭因為迷宮環(市購件)的部分,導致安裝上後還是發生心軸轉動的過程中有卡住的情況,,迷宮環已經跟周先生討論完(右圖),請PMC的蔡先生幫我們發出去給廠商加工。

由於前法蘭無法安裝的情況下,還是進行了軸向與徑向的測試,我們有測出幾組的數據,給予30、20、10bar測徑向與軸向的公斤力與位移量。

14. 迷宮環設計

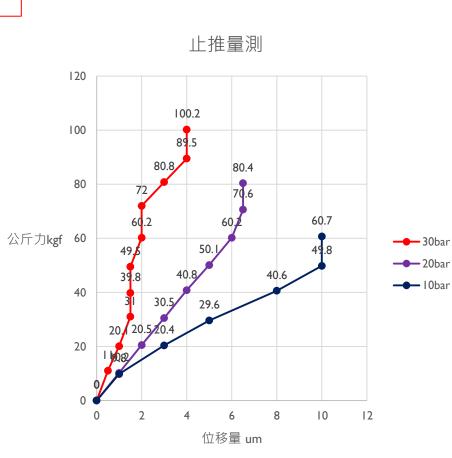




由於前法蘭已送出加工,在測試時並未安裝前法蘭的情況下進行供油轉動,設計上前法蘭與心軸式餘隙配合,所以並不會影響到系統剛性。

15. 主軸供油 測試

將表歸零後開始進行 供油


供油30、20、10bar壓力測試出的徑向數據

15. 主軸供油

測試

將表歸零後開始進行 供油

止推量測方式

供油30、20、10bar壓力測試出的止推數據